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Abstract

Continuum based integrated circuit process modeling is the dominant tool used to investigate and understand in-

tegrated circuit (IC) development. This paper describes the commonly used models for implantation, di�usion, and

material growth. In addition, the supporting numerical techniques are described. This paper focuses on the imple-

mentation in object oriented code, Florida Object Oriented Process Simulator (FLOOPS). The software architecture is

described for implementing models and numerics. A number of process examples are introduced and discus-

sed. Ó 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Integrated Circuit (IC) process modeling is a
fast changing ®eld, driven by new technology de-
velopment. As technology developers continue to
design new processes, software modeling codes
must be adapted to model these new fabrication
steps. In addition, technology shrinks can invali-
date old models and require substantial new
modeling and physics to be added to the software.
As a ®nal complication, the grid needs to be dy-
namic and revised with each process step since the
structure is being changed at each step. This re-
quires software packages to be easy to develop and
adapt, because the code never becomes static.

To address these challenges, we developed
FLOOPS (FLorida Object Oriented Process Sim-
ulator). FLOOPS uses C++ and class hierarchy to

represent not only the mesh and materials, but the
physical models as well. This allows new models to
be implemented easily, since they can be derived
from similar models. It also allows the grid code to
be separated from the physics fairly completely,
because the physics modeling code only needs to
interact with the grid at a fairly abstract level. This
allows simultaneous development of new physical
models along with advanced grid algorithms to
handle the developing structural information.

This paper describes FLOOPS and the models
contained for use in simulating advanced semi-
conductor processing. Because the end user is a
technology developer, trade-o�s have to be made
with respect to accuracy, CPU time, and ease of
use. Although atomic-scale modeling o�ers more
accuracy and physical insight, continuum model-
ing will continue to be the major approach for
most industrial engineers. Each of the major
modeling capabilities (implant, di�usion, and ma-
terial growth) are described along with the mesh
and material representation.
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2. Mesh and material classes

Any ®nite element or ®nite volume simulator
needs to discretize space into unique positions and
elements that connect the position. The numerical
accuracy of the ®nal solution depends on the
placement on connections, so this becomes a crit-
ical piece of the simulation package. In IC process
simulation, it is further complicated by the fact
oxidation and silicidation processes move the
material boundaries. Also, typical users wish to
simulate phenomena in one, two, and three di-
mensions depending on what e�ects they are ex-
amining. It is very useful to have a single multi-
dimensional simulator so that the user can have
con®dence that the same models are being used in
every case.

Most ®nite element solvers employ only a node
element table. This representation makes it more
di�cult to implement multi-dimensional simula-
tion, since it becomes hard to access edge
information in reliable way. For example, in a
two-dimensional simulation edges are kept in an

implied manner as an indexable pair of nodes in a
triangle. Traversing all edges once becomes a dif-
®cult chore, and becomes very hard in three-di-
mensions for a tetrahedral element. FLOOPS
stores a richer set of objects, including all the di-
mensional pieces. This takes more storage than the
traditional approach, but makes it easy to traverse
edges in any dimension.

2.1. Object description

Fig. 1 shows the overall structure of the mesh,
data, and grid representation. The FieldServer
object contains methods that allow access to all of
the grid and spatial information. FLOOPS typi-
cally has one active ®eldserver that is a global
variable that is operated on by all user commands.
The FieldServer contains a list of Coordinate ob-
jects, Mesh objects, and Data objects. The Coor-
dinate object represents a single position in space.
The Coordinate object includes pointers to one or
more Node objects. Each Mesh object incident on
a coordinate will have a di�erent node, so that

Fig. 1. Class hierarchy for the objects that represent grid and data in the simulator. Derivation is indicated by the bold arrow. When

one object contains a collection of other objects, this is indicated by regular arrows, and the range above the line indicated the size of

the collection.
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boundary Coordinates point to multiple Node
objects and internal Coordinates point to only one
Node object. This approach is the same as used in
SUPREM-IV [1], and allows for abrupt changes in
the solution values when the material changes.
This is an important requirement for process
simulation, since dopant concentrations are dis-
continuous across material boundaries.

Each Mesh object is made up of a pointer to a
material, a list of nodes, edges, faces, volumes, and
one or more boundary representations. Each mesh
corresponds to a single material, and multiple
meshes may exist with the same material in a single
®eldserver object. This happens frequently when
regions are etched and form discontinuous pieces.
Meshes may include an internal hole so that voids
can be represented, and is the reason that there may
be one or more boundaries of the mesh. Each mesh
object contains all of the internal grid representa-
tion pieces in addition to the external boundary.

There are also special meshes implemented to
represent material interfaces. These meshes are
embedded objects that are of dimension one
smaller than the overall simulation. For example,
in two-dimensional simulation, interface meshes
are one-dimensional lines. There are two main
reasons for interface meshes. First, they allow easy
speci®cation of boundary conditions. As will be
discussed in more detail later, equations are asso-
ciated with mesh and solution information, and
having an interface mesh allows a boundary con-
dition to be associated with a mesh rather than the
edge of a mesh. The second reason is that there are
cases where interfacial segregation occurs as a
phase, and these meshes allow storage of dose in-
formation directly on the interface.

Each Node object contains a pointer to the
single coordinate that represents the physical lo-
cation of the node. The node also contains a list of
all the edges incident upon it. These edges are or-
dered, so that the near and far end can be deter-
mined uniquely. An Edge in the mesh is made up
of two nodes, and a list of all faces incident. A
Face contains pointers to three or more Edges,
each of which is ordered in a counterclockwise
fashion. Each Face contains a list of all Volumes
incident. Volumes are made up of four or more
Faces.

Each of the grid objects (Node, Edge, Face,
Volume) contain pointers to the objects of one
greater and one lesser dimension. The pointers to
the objects of one lower dimension de®ne the ob-
ject, and the pointers to objects of one greater di-
mension are used to maintain traversal routines.
For example, an edge contains pointers to two
nodes, and to a list of faces incident on the edge. In
a one-dimensional simulation, an edge has an
empty set of faces incident. There is no direct list
of nodes contained in a face, although the infor-
mation is available through the ordered edges.

Nodes, Edges, Faces, and Volumes are derived
from the Element base-class. This parent class is
used to de®ne virtual functions that operate for
re®nement, removal, and other operations. Any
algorithm written on the element class will work
for any dimensional simulation. Also, any algo-
rithm that is written for edges will work in any
dimension, since they are available in all dimen-
sions. For example, if an edge is split, the edge
noti®es all faces attached of the change, and each
face noti®es all volumes attached of the change. In
this way, ®rst order dimensional independence of
the code is achieved.

In addition to connectivity and position infor-
mation, it is necessary to store data on each grid
object. For example, ®nite-volume coupling coef-
®cients are stored for each edge, and doping con-
centration is needed at each node. To handle data
storage, Data classes are used. The Data classes
support four di�erent data types; char, integer,
double, and three-dimensional vector. Each of
these types is derived from a common base class.
Each Element contains a unique pointer that
identi®es the location of its data. The Data class
contains a large contiguous block of memory, that
can be indexed by the pointers in each Element. In
this way, data ®elds are stored in local memory
proximity. A loop over all the values of boron
concentration is fairly e�cient, because all of the
boron data is stored in one large memory block.

2.2. Supported grid methods

Support from mesh adaption and re®nement is
critical for process simulation applications.
FLOOPS employs a variety of algorithms to
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represent moving boundaries from oxidation and
silicidation [2]. These algorithms operate on edges,
so to ®rst order they are dimensionally indepen-
dent.

Edges are examined to see if they meet a
growth-based re®nement criteria. The user can
specify the desired grid spacing in a growing re-
gion. Edges that are attached to a node at a
growing interface are split when longer than this
criteria. Any edge that passes this test is then split
at the midpoint of the edge. This generates one
new node and requires reconnection and splitting
of all the attached higher dimensional grid objects.

Grid removal is accomplished by identifying a
edge to be removed based on the rate the edge is
shrinking. The ends of this node are considered
candidates for removal. If one end is not on an
interface (completely internal to the material), that
end can be removed by reconnection. Reconnec-
tion involves reconnecting edges from the node to
be removed to the other node on the edge. For
edges which span a material and have both nodes
on interfaces, the surrounding volume is trans-
ferred to the growing material.

Mesh re®nement and removal is also performed
based on estimates of the numerical error associ-
ated with solution of the partial di�erential equa-
tions [3±5]. This leads to re®nement of the mesh in
areas of high-error, and coarsening in areas of
greater accuracy. There are three primary steps
involved in this process. First, estimate the nu-
merical error associated with the current discreti-
zations. Second, use this error to guide local
re®nement of the grid, both addition and sub-
traction of elements. Third, make sure the overall
grid quality is not signi®cantly degraded by the
local re®nement. These steps lead to well-de®ned
meshes that control error to a user set tolerance.

3. Implementation of di�erential equations

The ®nite volume and ®nite element code makes
use of a common set of base classes that represent
solution values and capabilities, partial di�erential
equations, and solution of linear systems. These
same objects are used to implement the ®nite-ele-
ment solver for material growth and the compan-

ion device simulation to FLOOPS, FLOODS [6].
Implementation of new physical systems are rela-
tively straightforward, because of the rich support
of the base classes. This allows quick derivation of
classes to represent new physical phenomena.
Fig. 2 shows a hierarchy of objects for a ®nite el-
ement solver.

The overall handling of the system of partial
di�erential equations is handled by the a Solver
class. It maintains a matrix (solutions by materi-
als) of PDE's and has methods to load the linear
Jacobian. This classes controls construction of the
system Jacobian. This solver class handles time
step integration, nonlinear solution via Newton's
method, and assembly of the Jacobian.

Each Solver class (as shown in Fig. 2) contains
a list of Solution objects and Materials objects
over which the problem is to be solved. At the
intersection of each solution and material, a pde
object can be associated. This allows di�erent
pde's to be used for each solution and material
type. Since all pde's have a common base class, the
solver does not have to know any of the particu-
lars of the physics. Each Solution object knows
how to query model selection information and
select the correct type of pde for each material.

3.1. Objects for solution variable, models, and
parameters

The Solution object contains a SolutionID ob-
ject base class which holds the basic information
about a particular solution variable, for example,
boron, interstitials, or velocity. The SolutionID
object contains the type identi®er and name, and
allows unique identi®cation of particular solution
variables. The class performs another critical
function of determining when a solution is needed
numerically, and allocation of the correct partial
di�erential equation classes to be used in that so-
lution. The NeedSol member determines if nu-
merical solution is required by checking to see if
the variable is in the structure or if the appropriate
models ¯ags or ambient have been selected. The
type of model selected is also used by the Make-
PDE member, which allocates partial di�erential
equation classes for a given material. There are
derived classes for each of the di�erent solution
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types in the code ± Velocity, Stress, Dopants,
Defects, Loops, Clusters, Traps, and Potential.

The Solution classes contain the solution values
in data ®elds. In di�usion simulation, three values
in time are required at each node to implement the
commonly used TR-BDF time discretization
scheme [7] for dopants and defects. Three data
®elds are allocated for that purpose. Solution
classes also contain an equation number data ®eld
to list the index of each grid object in the global
matrix assembled. This helps perform the scatter
operation from the small dense Jacobian for each
element to the larger, sparse matrix for the entire
system.

Parameters and model selections are stored lo-
cally by in the partial di�erential equations and
solutionID classes. These classes use a tcl based
database to store the parameter and model de-
faults. The tcl database can be edited during ses-
sion to change parameters and defaults. Long term
storage of these selections is performed by user-
editable tcl scripts. These scripts are demand
loaded, e.g. silicon interstitial parameters are not
read until required by the program. A tk based
visual browser and editor are under development.

Since ¯exibility is required, materials and solu-
tions can be created on the command line. Speci-
®cation of the relevant parameters are then the
only requirement. For example, FLOOPS was
developed for silicon technology but has been ex-
tended with user commands to also simulate dif-
fusion for HgCdTe [8,9].

3.2. Objects for di�erential equations

Partial di�erential equation classes are respon-
sible for implementing the discretized physical
equations. These are assigned one per solution
variable and material, as shown in Fig. 2. Each pde
is responsible for reading user parameters, assign-
ing equations, and assembly the Jacobian terms.

Each PDE object has a method to assign
equations and initialize itself. Parameters are read
from the tcl database. Equation numbers are al-
located and stored in the associated solution class.
In this fashion, global numbering of solutions is
achieved. Each pde object allocates the number of
equations necessary for the material and solution
type. This is communicated back to the solver
object, which passes the information to the matrix

Fig. 2. Each solver class contains a matrix of solutions and partial di�erential equations. Each Solution, in turn, contains data ®elds

and a solution identi®er.
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codes so that the matrix can allocate size. This
same routine is responsible for locating variables
that the pde is dependent upon. For example, the
dopant full couple pde is dependent on the po-
tential and point defect concentrations. It needs to
locate these solutions and equations for use during
assembly.

The primary member functions of the pde ob-
ject are the assembly functions. For ®nite-volumes,
there are two that are called ± one taking an edge
and one taking a node. For ®nite-elements, only
one assembly is called on the element. In the dif-
fusion solver, the discretization is ®nite-volume
based. For material growth processes, the discret-
ization is ®nite element based.

For ®nite volume PDE's, the edge based as-
sembly accumulates the ¯ux terms required for the
equation. In some cases, these routines are empty
when there is no ¯ux for the di�erential equation.
For example, this is the case for defect clusters
which are assumed immobile. Quantities for the
¯uxes that are required from each node are typi-
cally precomputed to save CPU time. Nodal values
are not recomputed for each edge. The node based
assembly routine is responsible for nodal quanti-
ties, like recombination ¯uxes. There are also
nodal based routines to assemble the time deriva-
tive terms. All of these terms are computed and
stored in an small dense Jacobian matrix (the
sti�ness matrix, to borrow the term from me-
chanical engineering). These matrices contain both
symbolic information as well as numeric. Since
each pde has access to the global equation num-
bers, these are stored into the dense Jacobians.

Finite element pde's operate in a similar fash-
ion. Each pde assembles the ®nite element small,
dense Jacobian on an individual element. Global
equation numbers are stored. Since each pde al-
locates its own equations, higher order elements
can be simply included by allocating edge, face, or
volume equations. We have used six node triangles
in the past, but primarily rely on linear elements
for most problems currently.

3.3. Objects for boundary conditions

Boundary conditions are handled in a very
similar way to that of body PDE's. Each interface

mesh can be assigned a pde object for a solution.
These pdes on the interface represent boundary
conditions. For ®nite volume codes, they are called
node by node. For ®nite element codes they are
called on the interface element of highest dimen-
sion (in two dimensions, that would be an edge).

For ¯ux type boundary conditions (surface re-
combination velocity), the ¯ux terms are inte-
grated and added to the other ¯ux terms in the
equations. Neumann boundary conditions at re-
¯ecting boundaries are simply not assembled.
Dirchelet boundary conditions present more of a
challenge. These boundary conditions need to be
able to over ride earlier assembly and clear the
matrix row. This is accomplished by mapping into
a new variable. For example, in device simulation,
we would like to ®x the quasi-fermi level and still
know the current. This is accomplished by adding
a variable for current to balance the ¯ux equation,
and then adding a new equation to ®x the quasi-
fermi level.

3.4. Linear solver support

Linear solvers are decoupled from the assembly
process so that di�erent linear solver packages can
be included easily. Fig. 3 shows the relationship
between the pde objects and the linear solvers.
Data is transferred from the assembly methods of
the pde objects to the linear solvers through the
sti� object. Each sti� object contains the small,
dense Jacobian and global equations or each ele-
ment type assembled. These are fairly transparent
objects, and can be read and written as if they were
two-dimensional arrays.

Each linear solver package consumes data from
the rest of the simulator through the sti� objects.
Each sti� object must be scattered from the small
dense representation into the large sparse internal
matrix representation. Nearly all packages allow
this type of access to the data structures, and some
will allow construction by vector. The sti� objects
can contain vector data and equation arrays to
speed operation.

Each linear solver must de®ne three objects.
The ®rst is the matrix storage structure, and is
responsible for storing the large sparse object. The
second is a preconditioner object, which precon-
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ditions and scales the matrix for iterative solution.
Finally, an iterator must be de®ned that takes the
matrix, preconditioner, and right-hand side and
returns a solution vector. For the special case of
direct solves, the preconditioner is a complete LU
factorization and the iterator is a simple for/back
solve. To date, six di�erent linear solvers have
been used in FLOOPS, although only two are
currently supported. These are UMF [10] and
some hand coded routines implementing zero-®ll
LU decomposition and BCGS iteration.

4. Dopant implantation and annealing

FLOOPS exploits the modular nature the code
to allow easy implementation of advanced models
for dopant implantation and annealing. It has
proved to be a viable platform for cross university
research, as a successful collaboration between the
University of Florida and the University of Texas
at Austin has resulted in advanced implantation
models being provided. The collaboration has
been facilitated by the modularity of FLOOPS.
Advanced defect, both point and extended, as well
as dopant models for annealing are provided.

4.1. Implantation models and implementation

The implantation models in FLOOPS are based
on integrating the point response across the sur-
face of the wafer. Before integrating the implant,
the surface is preprocessed. Colinear/planar pieces
are identi®ed and unioned into larger patches. This
allows speedier processing across the surface inte-

gration, so each node receives a contribution from
each surface piece. Impenetrable masks are iden-
ti®ed and eliminated from the surface, so that
useless integration can be avoided. Patches on the
surface that are overhung or parallel with the im-
plant beam are also eliminated.

Each surface element that remains after pre-
processing is assigned a point response class for
the implant. This point response is integrated
across the surface of the element. Since analytic
solutions are available only for cases where the
surface is perpendicular to the beam and rectan-
gular, in general this integration must be per-
formed numerically. Adaptive quadrature is used
to integrate in these cases. For implants in a two-
dimensional simulation, the integration must be
performed in one dimension. For implants in
three-dimensional simulation, the integration must
be performed in two dimensions. This latter inte-
gration can be very time consuming. Fig. 4 com-
pares the CPU time requirements for 3D and 2D
implants. 3D implantation times for typical
structures can be quite large, on the order of hours
for today's workstations.

The reduced set of surface elements are each
assigned a point response class. Point responses
are described with the base class Implant, and one
implant type is allocated per reduced surface
patch. In most implant cases, the point response is
a moment based approximation to the pro®le. The
most commonly used are the dual-pearson models
developed by Tasch and co-workers. Because the
point response function is a class with derived
elements, it is relatively easy to implement
new versions of appropriate point responses. The

Fig. 3. Major methods of the partial di�erential equation object, and its interaction with the linear solvers.
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Dual-Pearson models are implemented by using a
derived implant class. This class is constructed to
contain two individual Pearson point response
classes. The results of the individual point re-
sponses are summed.

4.2. Annealing models

One of the driving forces for modular models is
the ability to easily implement advanced models of
annealing and di�usion. Currently, the code sup-
ports three levels dopant modeling ± constant
di�usivity, Fermi-level dependent di�usivity, and
full dopant-defect pairs. Point defects and ex-
tended defects (dislocation loops and 311's) are
also supported. There is also support for di�erent
models of dopant activation and for dopant-defect
clustering. Boundary conditions are handled with
PDE classes that are assigned to interface mesh
materials.

This hierarchical system of objects makes it
possible to implement new physical models and
concepts quite easily. For example, the 311 defect
has become the popular explanation for transient
enhanced di�usion behavior [11]. A ®rst-order
model for this defect was implement in approxi-
mately one man-week [12]. Although the model
should not be considered a ®nished product (fur-
ther work on tuning and behavior is required), the
software architecture to support the model was
implemented quickly and completely.

4.2.1. Dopants
Both the dopant chemical and active concen-

tration are solved for numerically, even when the
active concentration is a simple analytic function
of the chemical concentration. This is to streamline
the code for the more complex models. This ap-
proach does make the simplest models less e�-
cient, but we feel this is a good trade-o�. As time
progresses, the more complex models will be re-
quired for nearly all stages of the process. For each
dopant, therefore, two di�erential equations are
solved:

CA � f �CA;CC;CI;CV; . . .�;
@CC

@t
� rJ�CA;CI;CV;W; . . .�;

�4:1�

where C is the concentration with subscripts A is
for active, C for chemical, I for interstitials, and V
for Vacancies. The W is for potential, f is a func-
tion for the active concentration and can include
di�erential operators, and J is the ¯ux of dopant
which depends on the model speci®ed.

To help compute the ¯uxes, an class for dis-
cretization of the arb operator is provided. The
routing returns the parent the value of the opera-
tor and the derivatives of the that value with re-
spect to a and b. In this way, higher order ¯ux
discretization [13,14] can be provided simply as
derived classes of the base operator class. E�-
ciency is also improved by having each dopant
model precompute the required values of a and b

Fig. 4. Relative CPU time comparison for implants into two- and three-dimensional structures as a function of the number of nodes in

the structure.
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at each node. This insures that nodal quantities are
computed only once.

For the most advanced dopant-defect pair
model, an additional dopant equation is solved to
compute the value of the substitutional dopant
concentration. In most cases, the substitutional
dopant concentration is equal to the active con-
centration. However, at short times after a large
number of point defects have been created from an
implant, the number of pairs can become quite
large [15,16]. This reduces the substitutional con-
centrations as a function of the active concentra-
tion. The dopant-defect pair model has a ¯ux given
by [15±17]:

JAX � DAXCA

CX

C�X
r ln CA

CX

CX

n
nI

� �
; �4:2�

where the subscript AX refers to dopant A-defect
X pair, A is the substitutional dopant, and X is the
defect. D is the equilibrium, Fermi-level dependent
di�usivity, and n is the electron concentration with
subscript I indicating the temperature dependent
intrinsic concentration. The scaled electron con-
centration handles the electric ®eld e�ect terms in
the equations. The superscript * refers to the
equilibrium dopant concentration. This ¯ux is also
added to the defect equations, to account for
motion of the pairs. This can be done simply
within the class, since the class allows the ¯ux term
to be added to the sti�ness matrix in any position.
In this case, the ¯ux and its derivatives are com-
puted once, and summed into both the dopant and
defect row of the sti�ness element. This model
quite obviously maps well into the arb operator
class, and can be e�ciently computed. It can also
be extended simply to include the e�ect of me-
chanical strain on the dopant ¯ux [18].

4.2.2. Defects
Point defects are accounted for in a manner

similar to the dopants. Each defect ¯ux is assem-
bled using an edge by edge assembly. The dopant-
defect pair ¯uxes are computed by the dopant. The
defect ¯uxes are computed including the electric
®eld, and can be represented with [17,19]:

JX � DXC�Xr
CX

C�X
; �4:3�

where the subscripts hold their meaning from
Section 4.2.1. The equilibrium defect concentra-
tion is a function of potential, so this does account
for the electric ®eld e�ects on the charged defects.
It is interesting to note that in this ¯ux formula-
tion, the prefactor is just the self-di�usion com-
ponent due to the particular defect. This is why, in
many cases, the exact values of DX and C�X do not
signi®cantly a�ect the answer as long as the
product is constant.

Also included in FLOOPS are models for {311}
defects [12] and dislocation loops [20±22]. These
extended defects are interstitial storage mechanisms
that in¯uence the di�usion of dopants. As these
defects dissolve, they release interstitials which
contribute to the enhanced di�usion of dopants
that are interstitial di�users. They also can absorb
interstitials and thereby reduce the di�usion.

The {311} loop model handles both evolution
and nucleation processes [12]. The nucleation
model is based on homogenous nucleation mech-
anisms. Capture and release of interstitials is in-
cluded. The {311} model solves for two moments ±
the number of {311} defects and the number of
interstitials contained in the defects.

The dislocation loop model includes the strain
from the loops, and their evolution during a variety
of ambient conditions [20±22]. Unfortunately, a
nucleation model does not exist for dislocations,
and the initial distribution data must be entered.
From that point, however, a dislocation distribu-
tion is solved for. This includes the average, mini-
mum, and maximum size as well as the total
interstitial concentration. Since it is frequently the
largest loops which can cause device degradation
[23], the maximum size is explicitly solved. The
code assumes a triangular distribution of loops.

4.3. Examples

4.3.1. Oxidation enhanced di�usion
Oxidation of the silicon surface injects intersti-

tials into the crystal [24]. This enhances the di�u-
sion of interstitial based di�using species, e.g.
boron and phosphorus. Fig. 5 shows the junction
depth of an implanted boron layer under a wet
ambient at 1000°C. Two di�erent conditions are
plotted. First, the point defect models were
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disabled, and the di�usion was computed using the
simple Fermi level dependent model. Second, the
point defect models are enabled and the di�usion
is computed as enhanced by the interstitial injec-
tion from the oxide. As can be seen, this creates a
substantially deeper junction.

Oxidation enhanced di�usion is a straightfor-
ward application of the models described earlier.
In this case, the user selects the modeling level, and
the defect and dopant PDE class allocations are
changed inside the di�usion solver. The majority
of the code remains the same and is not impacted
by the model change. Boundary condition PDE's
for the defects are available that compute both the
surface recombination and velocity dependent in-
jection of interstitials [15,25±27].

4.3.2. Dissolution of {311} defects
In simulating transient enhanced di�usion

(TED), it is important to be able to compute the
number of interstitials contained in {311} defects.

The {311} defects store interstitials and release
them at a rate that is similar to the duration of
TED [11]. It is important to model both the
nucleation and growth of these defect structures
as well as their dissolution. Fig. 6 shows the
comparison of measured {311} interstitial and
defect dose [11] with simulations from FLOOPS
[12].

This simulation read the total Frenkel pair
computation from UT Marlowe [28,29]. An addi-
tional interstitial population was added to account
for the silicon added during the implant. The
{311} defect model included simulation of both
the number of defects and the number of intersti-
tials. The vast majority of the defect population
recombines, leaving a population of interstitials
roughly equal to the implanted dose. These pre-
cipitate onto nuclei to form {311} defects. Subse-
quent dissolution is controlled by the binding
energy of an interstitial to a {311} defect, and was
set to 2.0 eV for this simulation.

Fig. 5. Plot of boron junction depth for an oxidizing (H2O) ambient at 1000°C as a function of time. Two models are compared ± with

and without point defects. Oxidation enhanced di�usion is quite evident, as the defect model shows a consistently deeper junction.
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4.3.3. Growth of loops during oxidation
During oxidation, interstitials are injected

which can be captured by dislocations. The dislo-
cations can be measured directly using plan-view
transmission electron microscopy, and the inter-
stitial count in the loops can be obtained. At
900°C, in an inert ambient, the dislocation loops
do not show appreciable growth or shrinkage.
Fig. 7 shows the growth in dislocations as mea-
sured [21] and simulated [20] by FLOOPS. Two
di�erent implant conditions are shown which
correspond to two di�erent initial loop conditions.
Also simulated is the evolution of the loops dis-
tribution which includes Ostwald ripening behav-

ior [22]. Initial loop distributions were measured
and entered into FLOOPS as the starting condi-
tion.

5. Material growth

5.1. Models

Modeling reactive di�usive growth processes
consists of performing two steps that are repeated
at each time step of the simulation. First, solve for
the di�usion and reaction of the reactant through
the growing layer. Secondly, account for the

Fig. 7. Data and simulation for dislocation loops evolution in a dry oxygen ambient at 900°C. At this temperature under an inert

ambient, dislocation loops do not show appreciable growth or shrinkage.

Fig. 6. Data [11] and simulation of the number of interstitials and number of {311} defects for two di�erent temperature anneals.
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volume changes caused by the growth and solve
for the stress caused by these volume changes in
the surrounding layers. The grid is then updated
and the next time step is solved. These two steps
can depend on each other, for example the stress
caused by the ¯ow could a�ect the di�usion of the
reactant as in oxide growth. The ¯ow chart for
solving for stress dependent material growth is
shown in Fig. 8. This section will begin by looking
at a general reaction and di�usion system and how
it is applied to titanium silicide and silicon dioxide
growth. The material models for solving for the
stress used in FLOOPS are discussed. Examples of
oxide and silicide growth are then presented.

5.1.1. Di�usion and reaction
The formation of both SiO2 and TiSi2 are

modeled using a Deal-Grove [30] like di�usion and
reaction model. In this model, a reactant di�uses
through the growing layer from the source of re-
actant to the reacting interface. At the reacting
interface, the molecules react to form the new
material. There are three ¯uxes associated with
this model: (1) the ¯ux of reactant from the source
to the interface between the source and growing
layer, F1; (2) the ¯ux of the reactant as it di�uses
through growing layer, F2; (3) the ¯ux of the re-
acting species as it is consumed by the reaction to
form the new layer of the growing material. In the
steady state condition, the three ¯uxes will be

equal and any one of them could be the rate lim-
iting step.

F1 is de®ned as:

F1 � kt�C� ÿ Cs�; �5:1�
where C� is the equilibrium concentration of re-
actant at the source interface, Cs is the reactant
concentration across the interface and kt is the
transfer coe�cient across the interface. If kt is
large, Cs will be equal to C� and this ¯ux will not
be a rate limiting step. This is implemented in
FLOOPS using a boundary condition PDE similar
to those employed for surface segregation of do-
pants.

The ¯ux of atoms across the growing layer F2 is
given by:

F2 � ÿD
�Cs ÿ Cr�

xg

; �5:2�

where D is the di�usion coe�cient of the reactant
in the growing layer, Cr is the reactant concen-
tration at the reacting interface and xg is the
thickness of the growing layer. This ¯ux is imple-
mented with a steady state di�usion PDE, and can
be either discretized in a ®nite volume or ®nite
element approach as necessary to link with the
material ¯ow.

The ¯ux at the reacting interface is:

F3 � ksCr; �5:3�

Fig. 8. Flow chart for the global control of the material growth processes.

300 M.E. Law, S.M. Cea / Computational Materials Science 12 (1998) 289±308



where ks is the reaction rate coe�cient. In steady
state the three ¯uxes can be set equal and the
growth rate dxg/dt can now be calculated by de-
®ning N1 as the number of molecules of reactant
incorporated into a unit volume of growing ma-
terial. The growth rate is proportional to this ¯ux.

In FLOOPS, general PDEs are assembled for
each of these three ¯uxes. The growth of SiO2 and
TiSi2 can be modeled by applying the PDEs to the
materials or interfaces for each of the three ¯uxes,
constant di�usivity, source of the reactant and
reacting interface. Table 1 shows which material
and material interfaces that each PDE are assigned
to for either TiSi2 or SiO2 growth. The reactant for
SiO2 growth is an oxidant (either wet or dry) and
for TiSi2 growth it is silicon.

The di�usivities and reaction rates used for the
di�usion of reactant can depend on stress. This has
been seen for both oxide [31,32] and titanium si-
licide [33] growth. The stress generated by thermal
oxidation is known to reduce both the reaction rate,
ks in Eq. (5.3), and the di�usivity, D in Eq. (5.2).
This was reviewed extensively by Ra�erty [32].

A compressive stress normal to the Si/SiO2 in-
terface will reduce the reaction rate ks by

ks � ks0 exp ÿ rnn

Vr

kT

� �
; �5:4�

where ks0 is the reaction rate from the Deal Grove
model, rnn is the stress normal to the Si/SiO2 in-
terface and Vr/kT is the activation volume divided
by Boltzmann's constant and the temperature in
K. The derivation of this expression was ®rst done
by Kao [31].

The di�usivity is in¯uenced by pressure. The
di�usivity as a function of pressure is given as

D � D0 exp ÿ PVd

kT

� �
; P > 0; �5:5�

and either D�D0 for P < 0 or

D � min�Dmax;Denh�; P < 0; �5:6�

where D0 is the di�usivity with zero stress, P is the
hydrostatic pressure, Dmax is the maximum di�us-
ivity, Denh is the D from Eq. (5.5) with P < 0. The
term Dmax is used to clamp the increase in di�usi-
vity due to tensile pressure. Stress dependent dif-
fusivity is used in FLOOPS for both silicon
dioxide and titanium silicide growth.

5.1.2. Stress and material ¯ow
After the reaction takes place there is a volume

change in the materials involved in the growth. This
volume change can cause deformation and/or stress
in the materials involved in the reaction as well as
any surrounding materials (including the sub-
strate). These stresses can in¯uence the growth rate,
cause defects in the silicon substrate or create voids
in polycrystalline ®lms. It is very important to ac-
count for the stress caused by ®lm growth as well as
the stress from other sources, for example, thermal
mismatch. This section will discuss stress and some
models that can be used to solve for the stress in
growing layers and any surrounding layers.

Stress in thin ®lms can be divided into two cat-
egories: intrinsic and extrinsic. Extrinsic stresses
are caused by the di�erences between thermal ex-
pansion coe�cients of the thin ®lm an the substrate
as the wafer is subjected to thermal cycling. There
are many sources of intrinsic stress. Intrinsic
stresses can be caused by the volume change caused
by the growth of thin ®lms like oxides and silicides.
It also arises from precipitation, annihilation of
defects, phase transformation, grain growth and
structural changes. The main focus of this work is
to look at intrinsic stresses due to volume change
and their a�ects on growth. Thermal stresses and
other intrinsic stresses can also be included in the
viscoelastic models used in FLOOPS.

FLOOPS supports several material models. In
linear viscous materials, the stress is linearly pro-
portional to the strain rate and can be expressed as:

r � D _e; �5:7�

Table 1

PDEs assigned to di�erent materials for the solution of the reactant during either titanium silicide or silicon dioxide growth

Growth system Constant di�usivity Source of reactant Reacting interface

TiSi2 TiSi2 Silicon/TiSi2 Titanium/TiSi2

Oxide SiO2 Gas/SiO2 Silicon/SiO2
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where D now represents the tensor of viscosities
for the material. For a simple one-dimensional
viscous element, D� 2l, where l is the viscosity.
Viscous materials can be incompressible which
means that the material's volume cannot change
even though it's shape does. Fluids are the mate-
rials that most often exhibit viscous behavior.

The behavior of viscoelastic materials lies be-
tween viscous and elastic. A Maxwell viscoelastic
material can be represented by a viscous and
elastic element in series. This model can exhibit
either viscous or elastic behavior depending on the
time scale of the observation in relation to the
relaxation time of the element. The behavior of the
element is given by:

_r
G
� r

l
� _e �5:8�

whose solution for constant growth rate and vis-
cosity is:

r � l _e 1ÿ eÿ1=s
ÿ �

; �5:9�
where l is the viscosity, t is the time and s is the
relaxation time for a linear Maxwellian viscoelastic
material:

s � l=G �5:10�
Here G is the shear modulus which is:

G � Y
2�1� v� ; �5:11�

where Y and v are the Young's modulus and
Poisson's ratio of the material.

At high strain rates most materials display
nonlinear or plastic ¯ow characteristics. One of the
most common nonlinear ¯ow models is the hy-
perbolic sine or Eyring model. This model has
been applied to oxide growth with great success by
Ra�erty [32]. In this model the viscosity is stress
dependent and given by:

l � l0

rs=rc

sinh�rs=rc� ; �5:12�

where l0 is the low stress viscosity, rc is the stress
above which the material softens and rs is the
maximum shear stress. This type of nonlinear
viscosity can be used for viscous ¯ow and visco-
elastic ¯ow of any material in FLOOPS.

5.1.3. Material models in FLOOPS
In FLOOPS the most general material model is

the viscoelastic model. Nonlinear or stress depen-
dent viscosity given by Eq. (5.12) is available in the
model. This material can exhibit either elastic or
viscous behavior depending on the time frame of
interest in relation to the relaxation time. For
times much less than s the behavior will be elastic
and for times much longer than s the behavior will
be viscous. This general response make this model
ideal for process simulation where a wide range of
material responses, temperatures and times need to
be simulated. Elastic behavior is simulated by
using a large viscosity in the viscoelastic model,
thereby giving the material a large relaxation time.
This has worked well for a number of elastic
problems including the stress due to nitride strips
where both the nitride and silicon are treated as
elastic materials.

5.2. Model implementation

All of the models for material growth are
solved using the Finite Element Method. There
are two types of PDEs that need to be solved for
in material growth, di�usion of reactant, and
stress due to the reaction. The code supports both
two- and three-dimensional simulations. Linear
shape functions are used for all the elements. The
nonlinear iterations that arise due to stress de-
pendent growth are solved using Newton's meth-
od [32,33].

In both the silicide and oxide growth systems
the di�usion of reactant is modeled by solving the
steady state di�usion equation. In the ¯ow equa-
tions the unknowns are the nodal velocities and
the equation governing deformation is Newton's
second law. Newton's second law for continuum
mechanical problems is given by

@rxx

@x
@rxy

@y
@rxz

@z

@ryy

@y
@ryx

@x
@ryz

@z

@rzz

@z
@rxz

@x
@ryz

@z

8>><>>:
9>>=>>; � 0 �5:13�

for a three-dimensional problem. The ¯ow is
solved for using the virtual work equation. It is
given by
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Z
X

d _eTr dX � 0; �5:14�

where d _e is the virtual strain rate and r is the stress
tensor.

The strain rate and stress tensors can be written
in vector form as:

_e �

_exx

_eyy

_ezz

_exy

_eyz

_ezx

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
; r �

rxx

ryy

rzz

rxy

ryz

rzx

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
; �5:15�

where the strain rate is the derivative of the ve-
locity. The stress is related to the strain rate
through the constitutive relationships of the pre-
vious section.

The most general model in FLOOPS is the
viscoelastic model described earlier with or with-
out nonlinear viscosity. This model is similar to
the one used by Peng [34] and Senez [35,36]. The
®nite element model can be used to model visco-
elastic behavior by including the correct constitu-
tive expression. The correct constitutive
relationships are for the deviatoric stress

rd � l 1ÿ eÿDt=s
ÿ �

�D _e� rd0eÿDt=s �5:16�
and for the dilatational or pressure component

p � KDtmT _e� p0: �5:17�

In these equations l 1ÿ eÿDt=s
ÿ �

is the e�ective
viscosity, rdo and p0 are the residual stresses from
the previous time step, and s � l=G is the relax-
ation time constant and

�D �

4
3
ÿ 2

3
ÿ 2

3
0 0 0

ÿ 2
3

4
3
ÿ 2

3
0 0 0

ÿ 2
3
ÿ 2

3
4
3

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
: �5:18�

The element sti�ness matrix can now be written as

Ke �
Z
Xe

BTDB dXe; �5:19�

where B is the derivative of the shape function
matrix and D is the material matrix which contains
the material parameters like e�ective viscosity and
the bulk modulus K. The residual stresses are
treated as right-hand side terms of the formZ
Xe

BTr0 dXe: �5:20�

This model can also be used to include stress due
to other sources, like thermal mismatch and in-
trinsic stress.

The class structure for the material growth
models are shown in Fig. 9. The base ®nite ele-
ment class is at the top level. It is derived from the
PDE class described earlier. This base class

Fig. 9. Class hierarchy of the ®nite element PDE classes used in material growth processes.
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contains functions that are used by all the classes
derived from it. It calculates shape functions for
the supported elements, which are triangles in 2D
and tetrahedras in 3D. It also supplies functions
that perform the matrix multiplications needed to
generate the element sti�ness matrix for each PDE.
The second level of classes represent the type of
equation that is being solved. There are classes
which solve for di�usion of reactant, stress with
velocity as the unknown and a coupled di�usion
and stress solution which is used for stress de-
pendent growth. These classes ®nd the element
sti�ness matrix for each model depending on the
material coe�cients and the element geometry.
For example for the ¯ow solution they assemble
equations of the form of Eq. (5.20). The third level
of classes contain functions which vary whether
the material model is viscous or viscoelastic, for
example the D matrix and the rhs assembly.

Table 2 shows the similarities between the si-
licide and oxide systems. In both cases, there are
three di�erent material types. There are materials
that are consumed by the reaction and are treated as
non¯owing and distorting materials. There are
materials that are ¯owing in response to the growth.
Finally, there are materials which are being both
consumed and ¯owing with respect to the growth
forces.

5.3. Three-dimensional oxidation examples

FLOOPS simulations of oxidation use nonlin-
ear stress dependent viscoelastic simulations. The
parameters were ®t to the cylinder and hole oxide

Table 2

PDE's assigned to di�erent materials for the solution of the ¯ow equations during either titanium silicide or silicon dioxide growth

Growth system Consumed Flow Consume and ¯ow

SiO2 Si SiO2, Si3N4 Poly

TiSi2 Si TiSi2, SiO2 Poly, Ti

Fig. 10. Three-dimensional oxidation structures using the nonlinear ¯ow and growth models for oxide. The nitride on the right shows

considerable more lifting under the tip than the square nitride shape on the left.

Fig. 11. Plot of the bird's beak length as a function of the nit-

ride shape. Lbb1 is the encroachment at the tip and Lbb2 is the

encroachment at the side. Lines are for the simulated results.
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growth of Kao [31,37] and various two-dimen-
sional LOCOS structures. These parameters were
then used to simulate the three-dimensional LO-
COS data from an experiment by Smeys [38]. The
experimental structures had a pad oxide thickness
of 10 nm while the nitride thickness was 150 nm.
After patterning the nitride, 430 nm of ®eld oxide
was grown at 1000°C in pyrogenic steam. The
oxidation time was 70 min. The nitride was strip-
ped, and the pad oxide was given a timed etch to
remove 10 nm of oxide. Top view scanning elec-
tron microscopy (SEM) photographs were taken
to measure the bird's beak length both under the
tip (Lbb2) under the line (Lbb1).

Nitride lines 1.5 lm in length and with widths
varying between 1.5 and 0.4 lm were simulated.
The ®eld oxide opening was 1.5 lm along both
edges. Re¯ecting boundary conditions were used
so 1

4
of the structure was simulated. Fig. 10 shows

the simulated structures for 1.5 and 0.4 lm wide
nitride lines. The nitride line is lifted higher for the
narrow line which agrees with the data.

In both two- and three-dimensional simulations
the bird's beak length is overestimated. The bird's
beak length is measured as the length from the
edge of the nitride mask to the point were the
oxide under the mask is 10 nm. Two-dimensional
simulations were used in order to determine the
oxide thickness under the nitride that resulted in a
bird's beak length of 0.19 lm. The thickness was
15.5 nm. This thickness is used to extract the bird's
beak length versus nitride width along the long
edge (Lbb2) and under the short edge (Lbb1). The
results obtained using this technique compared to
the experimental data are shown in Fig. 11. The
simulated results match the trend well for both the
increase of Lbb2 with decreasing width and the
decrease of Lbb1 with decreasing width.

Fig. 12. Salicide structure before silicide formation.
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5.4. Titanium salicide simulation

The starting structure before titanium silicide
formation is shown in Fig. 12. There is deposited
titanium contacting the silicon at the source and
drain and polysilicon at the gate. The simulation
anneal is 650°C RTA in nitrogen. For this anneal,
FLOOPS will simulate both the formation of
TiSi2 and TiN. TiSi2 forms in region where the
titanium is in contact with either silicon or poly-
silicon. TiN forms on exposed titanium due to the
nitrogen ambient. The addition of the TiN growth
capability took less than 3 man days to complete
due to the fact that it shares much of its code with
the SiO2 and TiSi2 growth code. The growth ki-
netics of TiN and TiSi2 are assumed to be di�u-
sion limited, a stress dependent di�usivity is used
for the TiSi2 growth. The viscoelastic model is

used to model the deformation during silicide
growth. The values for Young's modulus and
Poisson's ratio were taken from literature. All of
the materials are treated as nearly elastic by using
a high (1 ´ 1017) viscosity. A more detailed review
of the model parameters for titanium silicide
growth in FLOOPS is given in Cea [33]. The
structure after a 650°C anneal for 30 s and strip of
the TiN and unreacted titanium is shown in
Fig. 13. The bowing of the silicide on the short
gate length is produced. It is possible that other
stress dependent terms are important for silicide
growth for instance a reduction of the transport
of silicon across the silicon/TiSi2 interface or
plastic ¯ow of the materials present. More ex-
perimental evidence of the nature of the stress
e�ects on silicide growth is needed for more
quantitative simulation.

Fig. 13. Salicide after formation. Note the ``poly smile'' e�ect in the silicide on poly caused by nonlinear growth of the silicide.
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6. Conclusion

The main objects and capabilities of FLOOPS
have been presented. FLOOPS is a modular plat-
form which allows development of new models
and grid algorithms to be handled easily. The
object-oriented nature of the code allows sub-
stantial leverage, e.g, silicidation and oxidation
modules share substantial code. New models for
recently discovered phenomena can be quickly
added to the software. This platform e�ciently
allows multiple developers to interact across dif-
ferent areas of the code. Several examples dem-
onstrating both capabilities and performance have
been presented to demonstrate the e�ectiveness of
this approach.
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