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Interstitials can recombine at an oxide/silicon interface. Previous experimental work produces
contradictory results. Transient enhanced diffusion experiments suggest a nearly infinite surface
recombination rate, while oxidation enhanced diffusion suggests a much weaker recombination rate.
A di-interstitial mechanism is investigated, and analytic solutions are developed. This is compared
to the more commonly used interstitial mechanism. The di-interstitial mechanism can account for
most of the discrepancy in the data. © 1998 American Institute of Physics.
�S0021-8979�98�01719-8�

I. INTRODUCTION

Diffusion of dopants in silicon is controlled by the inter-
action of the dopants with point defects, interstitials, and
vacancies. Therefore, to predict with any certainty what hap-
pens to the dopants during thermal cycling, an understanding
of how the point defects behave is required. The point defect
populations can be perturbed by many of the processes in use
in integrated circuit processing, that lead to nonequilibrium
diffusion phenomena. Two of the major perturbations to the
defect populations are oxidation of the silicon surface and
implantation damage.

Implantation of dopants creates large numbers of Fren-
kel pairs in the lattice. This large excess of point defects
gives rise to transient enhancement of the dopant diffusion
�TED�. TED is qualitatively explained through the following
steps. The large number of Frenkel pairs recombine fairly
quickly and self annihilate. However, since an extra number
of atoms equal to the dose were added to the crystal, there is
an interstitial surplus equal to the dose. This is known as the
‘‘plus one’’ model of damage.1 These extra interstitials pre-
cipitate into �311� rod-like defects. Interstitials are released
from the �311� defects slowly as the �311�’s dissolve, with a
time constant approximately the same as the TED.2 These
released interstitials contribute to the enhanced diffusion of
the dopant present. The interstitials cannot be annihilated by
vacancies, since there are not enough of them, but they can
be annihilated by the surface. Diffusion to and annihilation at
the silicon surface �which is typically covered with silicon
dioxide� control the time length of the transient diffusion.

When the surface is oxidized, a volume expansion is
required. Part of this volume expansion can be accommo-
dated by injecting silicon interstitials into the bulk. Some of
these injected interstitials can recombine at the oxidizing in-
terface and the rest diffuse into the silicon.3,4 These excess
interstitials also give rise to enhanced diffusion, oxidation
enhanced diffusion �OED�. Experimental observations indi-
cate that this enhancement is proportional to the square root
of the oxide growth rate.3–6 This enhancement lasts as long

as the oxide is growing, and the enhancement depends on the
oxidation rate. The injected interstitials can diffuse laterally
and recombine at surfaces and with vacancies.

For both processes, the silicon/oxide interface is crucial
to understanding the behavior of the interstitials. Unfortu-
nately, published data from these differing conditions give
different predictions of the magnitude of the surface recom-
bination. It would be very helpful to have a unified picture of
the surface behavior. In the next section, simplified analytic
solutions are developed to help understand different models
of the surface behavior.

II. ANALYTIC SOLUTIONS ALONG AN INTERFACE

In general, the point defect concentrations are given by
the set of coupled differential equations:

�CI

�t ��DI�CI�KR�CICV�CI*CV*�,

�1�
�CV

�t ��DV�CV�KR�CICV�CI*CV*�.

In these equations, C is the concentration, D is the diffusiv-
ity, KR is the bulk recombination, the subscript I is for inter-
stitials, the subscript V is for vacancies, and the superscript*
is for equilibrium concentration. These equations represent
continuity of interstitials and vacancies. Additional terms
may be necessary to account for other sources of bulk anni-
hilation, e.g., on dislocations. The following equations rep-
resent the boundary conditions:

gI�DI“CI–n�KsurfI ,
�2�gV�DV“CV–n�KsurfV ,

where g is the surface injection and Ksurf is a function rep-
resenting surface annihilation. These equations balance the
flux at the surface of the wafer. These can account for any
surface mechanism, depending on the functional form of
Ksurf and g.

These equations do not have analytic solutions except
under very specific cases. However, we can make some sim-
plifying assumptions that can still provide significant insighta�Electronic mail: law@tec.ufl.edu
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into the behavior of point defects. First, we can neglect bulk
recombination which effectively decouples the differential
equations from one another. At low temperatures �800–
900 °C�, the bulk lifetime is on the order of several weeks.7
At higher temperatures, the lifetime is shorter and this be-
comes a more questionable assumption.8,9 However, if the
vacancies are not replenished by the surface, then CICV be-
comes approximately CI*CV* , and the bulk recombination
term becomes zero.

Once the equations are decoupled, it becomes easier to
treat the cases of TED and OED which are dominated by
interstitial behavior. The vacancies can now be neglected. To
compute the interstitial concentration under a surface injec-
tion condition, we can neglect the diffusion term in the
boundary condition of Eq. �2�. This corresponds to a very
strong surface source, that effectively pins the surface con-
centration. Griffin and Plummer5 have observed that there is
no reduction in OED for small oxidizing stripe widths, which
indicates that oxidation is a very strong surface source. In
this case, the injection must equal the surface recombination.

If we ignore two-dimensional diffusion and consider lat-
eral diffusion in a thin boundary layer under the surface, we
may recast Eq. �2� as

�g�hDI
�2CI

�x2
�KsurfI , �3�

where x is the distance along the interface and h is the thick-
ness of the boundary layer. This effectively assumes that the
defects diffuse in a laminar fashion—primarily laterally un-
der the mask edge. Diffusion into the bulk and back to the
surface is neglected. The appropriateness of this approxima-
tion will be discussed later. With this simple formula, it is
now possible to derive solutions to the interstitial concentra-
tion laterally and at an injecting surface for different forms of
KsurfI .

A. Interstitial case

If the surface recombination is dominated by recombina-
tion of single interstitials, then KsurfI can be written as

KsurfI�Kse�CI�CI*�, �4�

where Kse is the effective surface recombination rate.3,4 Ap-
proximating the surface injection by a step function (g0 un-
der the oxide and 0 under the nitride�, Eq. �3� becomes

�g0H��x ��hDI
�2CI

�x2
�Kse�CI�CI*�, �5�

where H(�x) is the Heavyside function having a value of 1
for x�0 �oxidizing region� and 0 for x�0 �inert region�.

If we limit the discussion to intrinsically doped material,
we can assume that CI* is a fixed value in space and time.
Equation �5� can be solved analytically. Under the oxidizing
surface (x�0), we have

c�
CI

CI*
�1�

g0
KseCI*

�
g0

2KseCI*
exp� x

LD
� , �6�

where c is the scaled interstitial concentration. Away from
the mask edge (x�0), the diffusion term in Eq. �5� is neg-
ligible and the injection and recombination terms must bal-
ance. This pins c at (1�g0 /KseCI*). As the injection drops
to zero, the surface concentration returns to the equilibrium
value. LD is the lateral diffusion length of the interstitials and
is given by

LD��hDI

Kse
. �7�

Recall that h is the thickness of the boundary layer
through which the lateral flow was assumed to take place. If
the thickness of that layer is taken to be the same as the
diffusion length, we obtain

LD�
DI

Kse
. �8�

Under the inert surface (x�0), the excess interstitials decay
exponentially with the same diffusion length:

c�
CI

CI*
�1�

g0
2KseCI*

exp� �
x

LD
� . �9�

B. Di-interstitial case

If we assume that the surface recombination is domi-
nated by a di-interstitial process,10 and we also assume that
the number of di-interstitials is at equilibrium with the inter-
stitial concentration, then the surface recombination can be
written as

KsurfI�Ks2�CI
2�CI*2�, �10�

where Ks2 contains both the surface recombination rate and
the temperature-dependent factor for the number of di-
interstitials as a function of interstitials. Under an injecting
surface away from the mask edge, the scaled excess intersti-
tial concentration can be written as

c�
CI

CI*
�� gI

Ks2CI*2
�1. �11�

Again, the limiting case is correct. As the injection drops to
zero, the scaled excess interstitial concentration drops to one.

Away from the mask edge, we can apply Eq. �3�. If we
limit the discussion to intrinsically doped material, we can
assume that CI* is a fixed value in space and time. For the
surface recombination in Eq. �10�, the differential Eq. �3� can
be solved analytically. Under the mask (x�0), we obtain

z�
�z0�1 ���z0�1 �exp��x/LD2�
�z0�1 ���z0�1 �exp��x/LD2�

,

�12�
LD2�� hDI

2Ks2CI*
,

where z is a modified variable related to the scaled interstitial
concentration, c, according to

z��c�2
3 �13�
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and z0 is the value of z at the edge of the mask. LD2 is the
lateral diffusion length of the interstitials.

While the solution given by Eqs. �12� and �13� seems
complex, we can gain significant physical insight into the
problem by examining the important features of the solution.
Since the surface recombination is bimolecular, this solution
tends to fall off faster than for a single interstitial near the
mask edge. Both solutions limit to an exponential decay at
distances farther from the edge. Figure 1 compares the two
solutions for a value of the scaled interstitial concentration at
the mask edge of 10, and the same final decay length (LD
�LD2). Both have the same limiting value of the decay
length, 4 �m. The di-interstitial model falls off much more
rapidly as the distance from the mask edge increases. We
will now apply this solution to data reported in the literature
on OED and TED to resolve the apparent contradictions in
reported decay lengths.

III. OXIDATION ENHANCED DIFFUSION DATA
A. 1D OED enhancement

Under the mask edge, Griffin and Plummer5 have re-
ported that the surface is a very strong source, so the limiting
cases discussed above can be used. Figure 2 shows the time
dependence of OED as reported by several researchers5,6,11 at
1100 °C. The best-fit power dependence is also plotted, and
as can be seen the time decay of the scaled interstitial con-
centration goes as roughly t�0.25.

The oxide growth velocity at high temperatures and
longer times depends on t�0.5. In the case of the di-
interstitial recombination, a t�0.25 dependence occurs natu-
rally if the injection rate, gI , is assumed to be proportional to
the growth rate. Equation �11� shows that the excess intersti-

tial concentration will go as the square root of the injection.
This fact is one of the reasons that the di-interstitial mecha-
nism was proposed.10

For the case of interstitial recombination, however, it is
not so easy. If the injection rate is proportional to growth
velocity, then the surface recombination rate, Kse , must be
made proportional to the square root of the velocity to obtain
the desired time dependence. One common assumption is to
make the effective surface recombination rate proportional to
the oxide growth velocity.12 Kse can then be written as

Kse�Ks1�K rat��ox�ref
� 1/2�1 � , �14�

where Ks1 is the surface recombination rate, K rat is the ratio
between the surface recombination at a growing and inert
oxide interface, �ox is the growth velocity, and � ref is the
reference velocity. This accounts for the time decay appro-
priately, but at a considerable increase in model complexity.
However, it quite nicely accounts for the surface strength. By
increasing K rat and gI , the diffusion term in Eq. �2� can be
made arbitrarily small. The other alternative is to make the
injection go as the square root of the velocity, but this leads
to a weak source that does not duplicate Griffin’s observed
result.5

B. 2D lateral enhancement

Two-dimensional studies of the lateral extent of the
OED can be made by using differing width stripes of masked
pad oxide between oxide regions. By measuring the junction
depth at the center of the masked regions, a decay length can
be extracted. Figure 3 plots the extracted decay lengths for
900, 1000, and 1100 °C as a function of time along with the
best-fit power dependence from Griffin and Plummer.5 Over
the times measured, the decay length continues to increase.

For the interstitial surface recombination model, the de-
cay length should be constant once the interstitials reach

FIG. 1. Comparison of a di-interstitial and interstitial dominated surface
recombination process under a mask with the scaled interstitial concentra-
tion held at 10 at the mask edge.

FIG. 2. One-dimensional OED diffusion enhancements as a function of time
�see Refs. 5, 6, and 11� at 1100 °C. The best-fit line is also shown.
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steady state. The data do not indicate this type of behavior,
and therefore Griffin suggested that the interstitials diffuse
very slowly due to interaction with substrate traps. The traps
also explained prior observations of differences in the appar-
ent diffusivity in differing substrate materials.13,14 However,
Ahn showed that, in float-zone silicon, interstitials diffused
entirely across a 20 �m membrane in 6 h at 1100 °C. In the
stripe experiments, steady state is not achieved at 12 h at
1100 °C, and the decay length is approximately 20 �m.
These two facts are very difficult to fit simultaneously.15,16

For di-interstitial recombination, however, the case is
different. The lateral decay depends on the magnitude of the
scaled interstitial concentration near the mask edge. The di-
interstitial recombination can be factored and then written as

KsurfI�Ks2�CI�CI*��CI�CI*�. �15�

For small values of the interstitial excess, we can treat CI
�CI* as approximately constant and equal to CI*�c0 . For
this simplification, Eq. �5� would hold with Kse being re-
placed by Ks2�CI*�(c0�1). Effectively, the recombina-
tion length would become time dependent, with the time de-
pendence of the decay length equal to one over the time
dependence of the surface concentration as in Eq. �8�. Figure
3 shows that the 1100 °C time dependence best fit is close to
1/4 power, which is very close to one over the surface con-
centration time dependence of �1/4.

van Dort also measured the lateral decay length using a
different technique. Alternating stripes were used on top of
uniform doping superlattices, and then deconvoluted with
large area secondary ion mass spectroscopy �SIMS�.17 van
Dort’s results showed a smaller decay length for 900 °C than
those Griffin reported, although the time was also shorter.
van Dort found a value of 1.5 �m in the deep spikes �com-
parable to the junction depths that Griffin looked at� at this
time. Another key difference was that van Dort looked at

smaller structures than Griffin. van Dort also reported a
strong depth dependence to the decay length, which would
be attributable to two-dimensional diffusion, e.g., flow from
the bulk back to the surface. In Sec. II, we assumed that this
effect was not strong, so the analytic solutions can be used
only for insight and not for predictive numerical modeling.

Figure 4 shows a sample solution to the lateral decay
using di-interstitial surface recombination and an edge scaled
interstitial concentration of 16. The decay length factor used
for the di-interstitial recombination is 3.8 �m. Fitting an ex-
ponential decay solution over the shorter stripe widths used
by van Dort, leads to a best fit decay length of 1.5 �m.
Because the di-interstitial solution falls off faster than a
single interstitial solution, as shown in Fig. 3, over short
widths a faster fall in the interstitial concentration is ob-
served. Over the stripe widths used by Griffin, the best-fit
decay length works outs to 3.8 �m close to the value of
decay length specified. Since the experiment looked at wide
stripes, a value close to the limiting value is found. The
design of an experiment becomes a critical factor. Experi-
ments, like Griffin’s, that are set to investigate a long decay
length discover a long decay length. However, an experi-
ment, like van Dort’s, that is designed to look over shorter
lengths finds a much smaller decay length. This model also
successfully explains the fact that Griffin’s junction depths
did not extrapolate to the 1D value at the mask edge.

For OED cases, the di-interstitial surface recombination
model offers two advantages to the single interstitial model.
First, the time dependence of the injection is more accurately
and easily accounted for. The di-interstitial model predicts
the time evolution of the lateral decay length at 1100 °C
quite accurately. Second, the difference in decay lengths be-
tween van Dort and Griffin is accounted for by the difference
in experimental design. Experiments designed to extract a

FIG. 3. Lateral decay length measured by extraction from stripes as a func-
tion of time and temperature. Best-fit power dependencies are also shown
for 1100 and 900 °C. FIG. 4. Comparison of analytic di-interstitial solutions for OED for Griffin’s

and Van Dort’s experiments. Shorter decay lengths would be measured over
shorter distances.
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short decay length find one, and experiments designed to find
a long decay length find a longer value.

IV. TRANSIENT ENHANCED DIFFUSION „TED… DATA

TED is also controlled by surface processes, and there is
a large amount of data that confirms that the TED depends
on distance to the surface. The work by Packan and
Plummer18 demonstrated that the amount of diffusion ob-
served by a buried marker layer increased with increasing
energy of the silicon damage implant. This could be due to
the distance of the surface, but could also be have been due
to the increased proximity of the damage to the buried layer.

A cleaner experiment was performed by Lim et al.19
This experiment performed surface etching to move the sur-
face closer to a preexisting damage layer. The resulting dif-
fusion enhancement was simulated with a variety of surface
decay length factors, and the best fit was found with a decay
length of 0.1 �m for two hours at 800 °C. This time and
temperature should have completed the TED, so the 0.1 �m
should be an effective number for the entire time.

van Dort used the same technique of doping superlattices
and stripes to investigate TED as he used for OED.20 Instead
of oxidizing to create an effective lateral enhancement, he
implanted silicon at 40 keV with a dose of 1014 cm�2 in the
stripe openings. The anneals were performed for 30 min at
900 °C. The extracted lateral decay length was 0.16 �m.

A similar experimental approach to Griffin’s stripes5 was
also used for TED by Frank and Law.21 Masking patterns of
wide open areas and varying mask widths were used on the
wafer. Long lines were used to eliminate three-dimensional
effects and to make a shallow bevel possible. A Si� implant
was performed into the open areas and variety of times and
temperatures of anneals were performed. Junction cleave and
stain was used to delineate junction depths under the masked

stripes. Resolution was only attained for patterns that were
greater than 2.0 �m. For this experiment, junction depth de-
cay lengths similar to those obtained by Griffin and
Plummer5 for OED �5–10 �m� were obtained.

Figure 5 shows the lateral decay of the interstitial super-
saturation as given by Eqs. �12� and �13�. These were calcu-
lated assuming that the silicon damage and resulting defect
structures maintained a constant supersaturation under the
open area. In the current accepted theory of TED,2 an atmo-
sphere of interstitials is maintained in the vicinity of �311�
defects that form early in the anneal cycle. For this case, the
assumption is valid. The supersaturation at the edge of the
mask was set to 104. For the interstitial recombination case,
the decay is a straight line. For the di-interstitial case, recom-
bination is higher near the mask edge. Best fits are shown
over the distances measured by van Dort20 and Frank.21
These decay lengths are consistent with the experimental ob-
servations. In a way similar to that for OED, experiments
designed to extract a short decay length find one, and experi-
ments designed to find a long decay length find a longer
value.

V. CONCLUSIONS

A di-interstitial surface recombination mechanism was
originally proposed to account for the time dependence of
OED. It can also explain many inconsistencies in the re-
ported strength of the surface on interstitials. Over long lat-
eral distances, the interstitial decay approximates an expo-
nential with a limiting decay length on the order of tens of
microns long. Over short distances, however, the fall off is
much more rapid. A best-fit exponential fit over short lateral
distances finds a decay length on the order of tenths of a
micron. This is consistent with several reported experimental
observations of the interstitial surface recombination
behavior.
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