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ABSTRACT

The oxidation of silicon is known to inject interstitials, and the presence of

silicon–germanium (SiGe) alloys at the Si/SiO2 interface during oxidation is

known to suppress the injection of silicon self-interstitials. This study uses a

layer of implantation-induced dislocation loops to measure interstitial injection

as a function of SiGe layer thickness. The loops were introduced by a 50 keV

2 9 1014 cm-2 P? room-temperature implantation and thermal annealing. Ger-

manium was subsequently introduced via a second implant at 3 keV Ge? over a

range of doses between 1.7 9 1014 cm-2 and 1.4 9 1015 cm-2. Results show that

upon oxidizing at 850 �C for 3 h or 900 �C for 70 min to condense the germa-

nium at the Si/SiO2 interface, where if forms a Si0.5Ge0.5 alloy. Upon subsequent

oxidations of 850 �C for 6 h or 900 �C for 2 h, partial suppression of interstitial

injection can be observed for sub-monolayer doses of germanium, and more

than three monolayers of Si0.5Ge0.5 (1.4 9 1015 cm-2) are necessary to suppress

interstitial injection below the detection limit during oxidation. These results

show that low-energy implantation of germanium can be used to eliminate or

modulate injection of oxidation-induced interstitials.

Introduction

Silicon–germanium (SiGe) is known to suppress the

injection of silicon self-interstitials into the substrate

during the oxidation of silicon [1, 2]. These

interstitials are believed to arise from the volume

mismatch between silicon and the oxide, wherein one

unit volume of silicon produces 2.25 unit volumes of

oxide [3]. The mechanism by which germanium

suppresses this phenomenon is still open to debate
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with the three competing theories being that: the

germanium reduces interstitial formation by being

more closely lattice matched with the oxide (thus

reducing interstitial generation) [4], that the forma-

tion energy of creating an interstitial in the SiGe lat-

tice is higher than in pure Si [5], thus driving all the

excess interstitials into the oxide rather than the

substrate, or that the presence of Ge at the interface

alters the stepwise mechanism of the oxidation reac-

tion in some way [6]. Despite uncertainty about the

mechanism, it is widely believed that only the first

monolayer at the oxidizing interface is sufficient to

account for the germanium effects on oxidation [7–9].

Experimentally, Si0.5Ge0.5 layers as thin as 50 Å have

been shown to totally suppress interstitial injection

during an oxidation, but nothing is known about

thinner layers, although it has been suggested that a

brief initial transient pileup stage may be required to

achieve interstitial suppression [9, 10]. Most previous

studies have reported total suppression when ger-

manium is present at the Si/SiO2 interface, making it

difficult to study. The goal of this work is to study

how controlling the dose of Ge at the surface in the

sub-monolayer to several monolayers regime affects

the injection of interstitials during the oxidation of

silicon.

Materials and methods

Silicon wafers were implanted at room temperature

with 50 keV phosphorus ions to a dose of

2 9 1014 cm-2 then subjected to a 750 �C furnace

anneal for 30 min under argon ambient to nucleate

sub-threshold dislocation loops. Subsequently, 30 nm

of silicon was epitaxially grown at *600 �C by

MOCVD [11, 12], increasing the depth of the loop

layer to 100 nm. Next the Ge samples were implanted

at room temperature with 3 keV germanium ions to

various doses. The doses used were designed to

correspond to fractions of the areal atomic density of

the silicon (100) surface and were 1.7 9 1014 cm-2,

3.4 9 1014 cm-2, 5.1 9 1014 cm-2, 6.8 9 1014 cm-2,

and 1.4 9 1015 cm-2, corresponding to 0.25, 0.5, 0.75,

1, and 2 monolayers of pure Ge, respectively. These

implants produced a thin amorphous layer, but no

extended defects are formed for implants at this

energy [13]. In order to pile up the implanted ger-

manium at the active interface and probe its effect, a

condensation step first had to be performed by

oxidizing through the implant range of the Ge?

implant as shown in Fig. 1a and b. A germanium

layer away from the oxidizing interface presents no

barrier to interstitial movement, so it was essential

that all implanted Ge be at the active interface [14].

Two different temperatures, 850 �C and 900 �C,

were studied. For the 850 �C samples, condensation

anneals were performed for 3 h followed by 6 h

anneals at 850 �C. For the 900 �C samples the con-

densation step was 70 min followed by 2 h further

oxidation. These anneals were performed in a tube

furnace operating under a pure O2 ambient. Follow-

ing the condensation annealing, the effect of subse-

quent oxidation on Ge accumulation and interstitial

injection was studied.

Results and discussion

It is well known that implanted germanium can be

segregated at an oxidizing Si interface to form a

pseudomorphic Ge-rich SiGe layer at the interface [7];

however, its effects on interstitial injection have never

been studied for such small Ge concentrations. In

addition, these earlier studies [7, 8] used higher Ge

doses and energies and did not attempt to quantify

segregation at the sub-monolayer level. Therefore, it

was important to verify that the entire implant dose

was segregated to the SiO2/Si interface in the present

case. For this, high-angle annular dark field scanning

transmission electron microscopy (HAADF-STEM)

imaging technique was used to image both oxidized

samples HAADF-STEM images were acquired on a

JEM-ARM200cF at 200 kV with a 0.078 nm resolu-

tion, a beam semi-convergence angle of 22 mrad, and

a 78 mrad collection angle. The results are shown in

Fig. 2.

Since Ge has a higher atomic number than Si, the

dumbbells of Si1-xGex alloy should exhibit brighter

contrast in the HAADF_STEM images. Both images

of the two samples with different annealing time

(Fig. 2a, b) show two bright dumbbell layers at the

surface, corresponding to roughly four monolayers

on a Si {100} surface. According to theory [15], the

germanium should condense to an equilibrium value

of Si0.5Ge0.5 at 850 �C, which would correspond to

four layers of Ge-enriched material if the entire dose

is present. This is exactly what is observed in Fig. 2,

suggesting that none of the Ge is lost to mixed oxide

formation early in the oxidation process [16].
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In order to quantify the degree of interstitial sup-

pression caused by the Ge, the buried dislocation

loops from the previous phosphorus implant and

anneal were used as detectors. It is well known that a

layer of such loops can be used to trap a flux of

interstitials provided that their planar density is

[1 9 1010 cm-2, while our density was a minimum

of 2 9 1010 cm-2 even after thermal coarsening [17].

The subsequent growth of the loops can then be used

to quantify the number of interstitials injected

[17, 18]. PTEM samples were made using a polish

and etch process and imaged in weak-beam dark-

field (WBDF) conditions. The loop density and total

number of bound interstitials were then quantified

[19, 20].

Figure 3 shows the number of trapped interstitials

in the loops after annealing in inert and oxidizing

ambients as a function of Ge dose. By subtracting the

inert value from the oxidized value, one can deter-

mine the net interstitial injection due to oxidation. As

the Ge dose increases, the number of injected inter-

stitials also decreases. By fitting an exponential to our

data as in Fig. 4, we can extrapolate that the injection

would likely drop below our detection limit for Ge

doses above or around 3 9 1015 cm-2. This corre-

sponds to around 8.8 layers of Si0.5Ge0.5 at the inter-

face. The data also show that even a very small

amount of germanium present at the active interface

is sufficient to induce a measurable and significant

drop in interstitial injection.

Figure 4 shows that germanium is more effective at

suppressing interstitial injection at lower tempera-

tures, but that the suppression behavior follows a

similar exponential decrease with increasing Ge

concentration for both temperatures. Contrary to

previous assumptions that only one monolayer was

Figure 1 Schematic diagram of the experimental setup showing

a the samples post-implant, b the samples following the conden-

sation anneal, and c the samples following subsequent oxide

growth. The black circles at 100 nm representing loops can be seen

to both coarsen and grow in response to these anneals.

Figure 2 a HAADF-STEM image of a sample with 3 keV,

1.4 9 1015 cm-2 Ge? implant followed by a 3 h 850 �C furnace

annealing under dry O2. b HAADF-STEM image of the same

sample followed by a 9 h annealing under the same conditions.

c Comparison of image intensity when normalized for background

and intensity onset. This shows little to no peak broadening.
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necessary, this work shows that a single surface layer

is insufficient, and our extrapolated data predict that

around 3 monolayers of pure Ge, forming 6 mono-

layers Si0.5Ge0.5, would be needed at 850 �C and that

nearly 5 monolayers of pure Ge forming almost 9

monolayers of Si0.5Ge0.5 would be needed at 900 �C to

suppress interstitial injection to below our detection

limit. Since in practice the germanium is piling up to

only around 50%, this leads to thickness dependence

[15]. Computational studies have shown that it is far

less favorable to form silicon interstitial in Si0.5Ge0.5

but that does not explain the thickness dependence

observed here as only the top layer should participate

in the initial oxidation reaction and subsequent for-

mation [10]. Microscopic segregation at the surface is

a potential source of Si interstitials, but was not

observed [4, 21, 22]. Nucleation events involving

multiple layers are possible sources of thickness

dependence, but were not observed [21–23]. How-

ever, it is important to note that if nanoscale segre-

gation were taking place, the techniques used here

would not have detected it. It is also possible that

SiO2 itself is able to penetrate a short distance into the

substrate and participate in redox reactions with the

Figure 3 Bound interstitial areal density as a function of Ge dose

for the annealing performed at 850 �C. The lower line (triangular
markers) represents control samples annealed in an inert (argon)

ambient, the upper line (circular markers) represents the data for

oxidized samples, and the line in the middle (square markers) is

the net injection during the post-condensation anneal.

Figure 4 Combined net interstitial injection for 850 and 900 �C
anneals. Interstitial injection clearly decreases exponentially with

increasing Ge dose in both cases. Curve fitting gives R2 values of

0.98 and 0.97 for the 900 and 850 �C anneals, respectively.

Extrapolated detection limit for both curves is also shown.
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silicon and germanium as GeO and SiO are both

volatile species [24, 25]. This would be consistent

with a reaction zone where SiGe must be fully pre-

sent to have the shutoff effect [26, 27]. It is also

speculated that the SiGe layer could act as a reservoir

for Si interstitials, due to their slow passage through

the layer. That is, the Si interstitials may simply never

catch up with the advancing SiGe/Si interface and

thus become incorporated into the SiGe layer instead.

If this were the case, the effect would be more dra-

matic with increasing SiGe thickness and lower

temperature, which is exactly what is observed. This

could be tested by performing an inert annealing

following an oxidizing annealing to see whether

interstitial injection continues. Unfortunately, such a

study would likely fall below the detection limit

(1 9 1013cm-2) of our loop detector technique. Fur-

ther studies including DFT calculations are in pro-

gress to ascertain the mechanism, as structural

changes upon addition of a phase can play an

important role in observed effects [28]. Regardless of

the exact mechanism, the ability to tailor interstitial

injection during an oxidation using standard implant

technology opens up new and unique processing

windows.

Conclusion

Germanium remains active at an oxidizing interface

well below the first layer, contrary to what was pre-

viously thought, that only the first layer of SiGe

participated in oxidation reactions. This work has

shown that far more than the surface layer partici-

pates in the interstitial suppression effects and that

even very low concentration doping at the interface

can have a dramatic and tunable affect on interstitial

injection [7–9]. While the exact mechanism for this

remains a subject of ongoing research, it should be

possible to use this technique for such things as to

tailor junction depths in deep devices provided the

exponential functions extracted from our data can be

extrapolated to tailor injection behavior in other dose

and energy conditions not yet studied.
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